214 research outputs found

    Moon-tracking orbits using motorized tethers for continuous earth–moon payload exchanges

    Get PDF
    For human colonization of the moon to become reality, an efficient and regular means of exchanging resources between the Earth and the moon must be established. One possibility is to pass and receive payloads at regular intervals between a symmetrically laden motorized momentum-exchange tether orbiting about Earth and a second orbiting about the moon. There are significant challenges associated with this method, among the greatest of which is the development of a system that incorporates the complex motion of the moon into its operational architecture in addition to conducting these exchanges on a per-lunar-orbit basis. One way of achieving this is to use a motorized tether orbiting Earth and tracking the nodes of the moon’s orbit to allow payload exchanges to be undertaken periodically with the arrival of the moon at either of these nodes. Tracking these nodes is achieved by arranging the tether to orbit Earth with a critical inclination, thus rendering its argument of perigee stationary in addition to using the precession effects resulting from an oblate Earth. Using this in conjunction with pre-emptive adjustments to its angle of right ascension, the tether will periodically realign itself with these nodes simultaneously with the arrival of the moon

    Could the Pioneer anomaly have a gravitational origin?

    Full text link
    If the Pioneer anomaly has a gravitational origin, it would, according to the equivalence principle, distort the motions of the planets in the Solar System. Since no anomalous motion of the planets has been detected, it is generally believed that the Pioneer anomaly can not originate from a gravitational source in the Solar System. However, this conclusion becomes less obvious when considering models that either imply modifications to gravity at long range or gravitational sources localized to the outer Solar System, given the uncertainty in the orbital parameters of the outer planets. Following the general assumption that the Pioneer spacecraft move geodesically in a spherically symmetric spacetime metric, we derive the metric disturbance that is needed in order to account for the Pioneer anomaly. We then analyze the residual effects on the astronomical observables of the three outer planets that would arise from this metric disturbance, given an arbitrary metric theory of gravity. Providing a method for comparing the computed residuals with actual residuals, our results imply that the presence of a perturbation to the gravitational field necessary to induce the Pioneer anomaly is in conflict with available data for the planets Uranus and Pluto, but not for Neptune. We therefore conclude that the motion of the Pioneer spacecraft must be non-geodesic. Since our results are model independent within the class of metric theories of gravity, they can be applied to rule out any model of the Pioneer anomaly that implies that the Pioneer spacecraft move geodesically in a perturbed spacetime metric, regardless of the origin of this metric disturbance.Comment: 16 pages, 6 figures. Rev. 3: Major revision. Accepted for publication in Phys. Rev. D. Rev. 4: Added two reference

    Interplanetary program to optimize simulated trajectories (IPOST). Volume 4: Sample cases

    Get PDF
    The Interplanetary Program to Optimize Simulated Trajectories (IPOST) is intended to support many analysis phases, from early interplanetary feasibility studies through spacecraft development and operations. The IPOST output provides information for sizing and understanding mission impacts related to propulsion, guidance, communications, sensor/actuators, payload, and other dynamic and geometric environments. IPOST models three degree of freedom trajectory events, such as launch/ascent, orbital coast, propulsive maneuvering (impulsive and finite burn), gravity assist, and atmospheric entry. Trajectory propagation is performed using a choice of Cowell, Encke, Multiconic, Onestep, or Conic methods. The user identifies a desired sequence of trajectory events, and selects which parameters are independent (controls) and dependent (targets), as well as other constraints and the cost function. Targeting and optimization are performed using the Standard NPSOL algorithm. The IPOST structure allows sub-problems within a master optimization problem to aid in the general constrained parameter optimization solution. An alternate optimization method uses implicit simulation and collocation techniques

    Interplanetary Program to Optimize Simulated Trajectories (IPOST). Volume 3: Programmer's manual

    Get PDF
    The Interplanetary Program to Optimize Space Trajectories (IPOST) is intended to support many analysis phases, from early interplanetary feasibility studies through spacecraft development and operations. Here, information is given on the IPOST code

    Orbit Determination Accuracy Analysis of the Magnetospheric Multiscale Mission During Perigee Raise

    Get PDF
    The Goddard Space Flight Center (GSFC) Flight Dynamics Facility (FDF) will provide orbit determination and prediction support for the Magnetospheric Multiscale (MMS) mission during the mission's commissioning period. The spacecraft will launch into a highly elliptical Earth orbit in 2015. Starting approximately four days after launch, a series of five large perigee-raising maneuvers will be executed near apogee on a nearly every-other-orbit cadence. This perigee-raise operations concept requires a high-accuracy estimate of the orbital state within one orbit following the maneuver for performance evaluation and a high-accuracy orbit prediction to correctly plan and execute the next maneuver in the sequence. During early mission design, a linear covariance analysis method was used to study orbit determination and prediction accuracy for this perigee-raising campaign. This paper provides a higher fidelity Monte Carlo analysis using the operational COTS extended Kalman filter implementation that was performed to validate the linear covariance analysis estimates and to better characterize orbit determination performance for actively maneuvering spacecraft in a highly elliptical orbit. The study finds that the COTS extended Kalman filter tool converges on accurate definitive orbit solutions quickly, but prediction accuracy through orbits with very low altitude perigees is degraded by the unpredictability of atmospheric density variation

    Extension of the sun-synchronous Orbit

    Get PDF
    Through careful consideration of the orbit perturbation force due to the oblate nature of the primary body a secular variation of the ascending node angle of a near-polar orbit can be induced without expulsion of propellant. Resultantly, the orbit perturbations can be used to maintain the orbit plane in, for example, a near-perpendicular (or at any other angle) alignment to the Sun-line throughout the full year of the primary body; such orbits are normally termed Sun-synchronous orbits [1, 2]. Sun-synchronous orbits about the Earth are typically near-circular Low-Earth Orbits (LEOs), with an altitude of less than 1500 km. It is normal to design a LEO such that the orbit period is synchronised with the rotation of the Earth‟s surface over a given period, such that a repeating ground-track is established. A repeating ground-track, together with the near-constant illumination conditions of the ground-track when observed from a Sun-synchronous orbit, enables repeat observations of a target over an extended period under similar illumination conditions [1, 2]. For this reason, Sun-synchronous orbits are extensively used by Earth Observation (EO) platforms, including currently the Environmental Satellite (ENVISAT), the second European Remote Sensing satellite (ERS-2) and many more. By definition, a given Sun-synchronous orbit is a finite resource similar to a geostationary orbit. A typical characterising parameter of a Sun-synchronous orbit is the Mean Local Solar Time (MLST) at descending node, with a value of 1030 hours typical. Note that ERS-1 and ERS-2 used a MLST at descending node of 1030 hours ± 5 minutes, while ENVISAT uses a 1000 hours ± 5 minutes MLST at descending node [3]. Following selection of the MLST at descending node and for a given desired repeat ground-track, the orbit period and hence the semi-major axis are fixed, thereafter assuming a circular orbit is desired it is found that only a single orbit inclination will enable a Sun-synchronous orbit [2]. As such, only a few spacecraft can populate a given repeat ground-track Sun-synchronous orbit without compromise, for example on the MLST at descending node. Indeed a notable feature of on-going studies by the ENVISAT Post launch Support Office is the desire to ensure sufficient propellant remains at end-of-mission for re-orbiting to a graveyard orbit to ensure the orbital slot is available for future missions [4]. An extension to the Sun-synchronous orbit is considered using an undefined, non-orientation constrained, low-thrust propulsion system. Initially the low-thrust propulsion system will be considered for the free selection of orbit inclination and altitude while maintaining the Sun-synchronous condition. Subsequently the maintenance of a given Sun-synchronous repeat-ground track will be considered, using the low-thrust propulsion system to enable the free selection of orbit altitude. An analytical expression will be developed to describe these extensions prior to then validating the analytical expressions within a numerical simulation of a spacecraft orbit. Finally, an analysis will be presented on transfer and injection trajectories to these orbits

    Analytical low-thrust satellite maneuvers for rapid ground target revisit

    Get PDF
    This paper presents an analytical solution for a low-thrust maneuver to reduce the flyover time of a given terrestrial target. The work extends the general solution previously developed by the authors for a 3-phase spiral transfer that results in a change in the relative right ascension of the ascending node and argument of latitude of satellites in a constellation, by varying the orbital period and the J2 effect experienced by each satellite. This work improves the accuracy of the existing method by including the periodic effects of J2 in the analytical solution. Using these improved equations, a calculation of the flyover time of a given latitude can be determined, and the passes for which the target longitude is in view identified. Validation against a numerical orbit propagator shows the analytical method to accurately predict the sub-satellite point of the satellite to within ±1° of longitude after 15 days. A case study is performed showing that the method can successfully be used to reduce the time of flyover of Los Angeles from 14 days to just 1.97 days, with a change of velocity (ΔV) of 63m/s. The full exploration of the solution space shows the problem to be highly complex, such that an increase in the ΔV used for a maneuver will not necessarily reduce the time of flyover, potentially making optimization using a numerical solution challenging. It also shows that very similar flyover times can be achieved with very different ΔV usage. As such, an overview of the solution space is extremely valuable in allowing an informed trade-off between the time of flyover and maneuver ΔV

    Orbital dynamics of "smart dust" devices with solar radiation pressure and drag

    Get PDF
    This paper investigates how perturbations due to asymmetric solar radiation pressure, in the presence of Earth shadow, and atmospheric drag can be balanced to obtain long-lived Earth centred orbits for swarms of micro-scale 'smart dust' devices, without the use of active control. The secular variation of Keplerian elements is expressed analytically through an averaging technique. Families of solutions are then identified where Sun-synchronous apse-line precession is achieved passively to maintain asymmetric solar radiation pressure. The long-term orbit evolution is characterized by librational motion, progressively decaying due to the non-conservative effect of atmospheric drag. Long-lived orbits can then be designed through the interaction of energy gain from asymmetric solar radiation pressure and energy dissipation due to drag. In this way, the usual short drag lifetime of such high area-to-mass spacecraft can be greatly extended (and indeed selected). In addition, the effect of atmospheric drag can be exploited to ensure the rapid end-of-life decay of such devices, thus preventing long-lived orbit debris

    Fundamentals of the LISA Stable Flight Formation

    Get PDF
    The joint NASA-ESA mission LISA relies crucially on the stability of the three spacecraft constellation. Each of the spacecraft is in heliocentric orbits forming a stable triangle. The principles of such a formation flight have been formulated long ago and analysis performed, but seldom presented if ever, even to LISA scientists. We nevertheless need these details in order to carry out theoretical studies on the optical links, simulators etc. In this article, we present in brief, a model of the LISA constellation, which we believe will be useful for the LISA community.Comment: 9 Pages, 2 Figure Submitted to Classical and Quantum Gravit
    • …
    corecore